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In this lecture, we discuss how digital electronics has evolved over the years, from 
discrete logic to highly integrated circuits.  For this module, the digital technology 
that we will be focusing on is called “Field Programmable Gate Arrays” or FPGAs.  
This lecture will introduce you to the idea of such digital devices, and in particular, 
you will learn about the particular device that you will be using in the Second Year 
Laboratory later in the term to support this module.
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Last year you learned about implementing digital circuits using gates such as the one 
shown here.  You can still buy this chip with FOUR NAND gates in one package and 
this is known as discrete logic.  We generally do not use these any more.  It is slow, 
expensive, consumes lots of energy and very hard to use.

Nevertheless, it is good to learn about NAND and NOR gates because, using De 
Morgan’s theorem, you could in theory design and implement an Intel i7 
microprocessor using use two input NAND or NOR gates alone.  NAND or NOR gates 
therefore could be regarded as the building block of all digital circuits.  Similarly, you 
could in theory build a car using only basic Lego blocks.  Unfortunately such a car 
would not be very good.
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In early days of integrated circuits, designers started using rows of basic gates 
(shown as the dark stuff here arranged in rows).  These are either completely 
customised (full-custom) or it is made with standard rows of gates but leaving the 
gates unconnected.  For a specific design, the gates are connect through metal lines 
in the wiring channels.  Therefore the customisation is only in the wiring metal 
layers and not the layers with transistors.  This is known as “semi-custom” 
application-specific integrated circuits (ASICs).
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Of course you can also customise everything – each transistor and each wiring 
connected in a full-custom manner. Here is the layout of Intel i7 microprocessor 
(with 4 cores).  Designing such a circuit is very expensive, highly risky, and once 
designed, it cannot be changed easily.

Most applications in electronic industry cannot afford to embark on such a design.  
This drives the rise of the Field Programmable Gate Array.
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So what is an FPGA?  You came across the idea of Programmable Logic Device in the 
first year, where the user can program what the logic gate does (be it a NAND or 
NOR or some form of SUM-of-PRODUCT implementation) or an adder, you as a user, 
can “program” the chip to perform that logic function.  Now we can add another 
layer of user programmability – you can program how these logic gates are 
connected together!  In that way, we have a general programmable logic chip.  
Unlike the microprocessor where the program is just the instruction to fix digital 
hardware, here you can program the hardware itself!

The first FPGA was introduced by Xilinx in 1985.  It has arrays of logic blocks which 
are programmable.  It is surrounded by PROGRAMMABLE ROUTING RESOURCES, 
which allows the user to define the interconnections between the logic blocks.  It 
also has lots of very flexible input and output circuits (programmable for TTL, CMOS 
and other interface standards).

Nowadays, there are two major players in the FPGA domain: Xilinx and Altera (now 
part of Intel).  These two company dominate 90% of the FPGA market with roughly 
equal share.
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Let us look inside an FPGA. Consider the logic block shown in blue in the last slide  
(Altera calls their logic block a Logic Element (LE)).  Typically an LE consists of a 4-
input Look-up Table (LUT) and a D-flipflop.  Let us for now NOT to worry about how 
the 4-LUT is implemented internally.  Just treat this as a 4-input combinatorial circuit 
which produces one output signal as shown here.  The IMPORTANT characteristic is 
that the 4-LUT can be user defined (or programmable) to implement ANY 4-input 
Boolean function.
As we will see later, the lookup table is actually implemented with a bunch of 
multiplexers.  
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The Logic Elements are surrounded by lots of routing wires and interconnection 
switches. Typically a signal wire to the Logic Block or Logic Element can be 
connected to any of these wiring channels through a programmable connection 
(essentially a digital switch). Xilinx FPGAs also have dedicated switch blocks shown 
here.  Horizontal and vertical wires can be connected through such a switch block 
with programmable switches (for now, don’t worry how that’s done).  

FPGAs have huge amount of these programmable resources and switches. Typically 
a very small percentage of these are being connected (i.e. ON) for a given 
application.

The main advantage and attraction of FPGA comes from the programmable 
interconnect – more so than the programmable logic.  
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Programming an FPGA is called “configuration”. In programming a computer or 
microprocessor, we send to the computer instruction codes as ‘1’s and ‘0’s.  These are 
interpreted (or decoded) by the computer which will follow the instruction to perform tasks.  
The microprocessor needs to be fed these program codes continuously for it to function.

In FPGAs, you only need to configure the chip ONCE on power-up.  You download to the 
chip a BITSTREAM (also bits in ‘1’s and ‘0’s), which determines the logic functions 
performed by the Logic Elements, and the interconnecting switches in order to connect the 
different LEs together to make up your circuit. Once the bitstream is received, the FPGA no 
longer needs  to read the 1’s and 0’s again, very unlike a microprocessor which has to 
continually decoding the machine instructions.  That’s why we say that we configure an 
FPGA (instead of programming an FPGA, although the two words are used interchangeably).

What happens when you configure an FPGA?  Let us consider the 4-input LUTs circuit.  This 
is typically implement using a tree of four layers of 2-input to 1-output multiplexers.  The 
entire circuit is behaving like a 16-to-1 multiplexer using the 4 inputs ABCD as the control of 
the MUX tree.  For example, if ABCD = 0000, then the top-most input of the MUX is routed 
to Y output.

In this way, ABCD forms the input columns of a truth table.  For 4-inputs, the truth table has 
16 entries.  The output Y for each of the truth table entry corresponds to the input of the 
MUX. Configuration involves fixing the inputs to the 16-to-1 MUX by storing ‘1’ or ‘0’ in the 
registers R.  Changing the 16 values stored, you can change to truth-table to anything you 
want.
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To configure the programmable routing, let us look at how the routing circuit works.  Take 
Xilinx SWITCH BLOCK circuit (green blocks in slide 7).  This block controls the connections 
between four horizontal channels and four vertical channels.  The diamond shaped block is a 
potential interconnect site.  Inside the switch block circuit, there are 6 transistor switches 
which are initially all OFF (or open circuit).  

The gate input of EACH switch is controlled by the output of a 1-bit register (e.g. a 1-bit D-
FF).  If the register stores a ‘1’, the routing transistor will have its gate driven high. Since the 
transistor is an nMOS transistor, it will become conducting.  In this way, configuring the 
routing resources simply means that the correct ‘1’s and ‘0’s are stored in the registers that 
control these routing transistors.

As you would expect, typically an FPGA would have hundreds of thousands of these routing 
switches, most of these are OFF.  Once programmed, the interconnections are made. The 
bold lines in the diagram above (after programming) shows the programmed connections.

Bitsteam information used for configuration purpose are usually stored on a flash memory chip, 
which is download to the FPGA during power-up – similar to “booting up a computer”.   Once this is 
done, the FPGA is progammed to perform a specific user function (e.g. your design in the VERI 
experiment).

Alternatively you can send the bitstream to the FPGA via a computer connection to the chip.  On the 
DE1-SOC board, it does both.  Powerup DE1 will configure the Cyclone V FPGA chip to a “waiting” 
mode, which makes the DE1 board talk to the computer via the USB port while flashing the lights ON 
and OFF.  You then send to the board a bitstream of your design via the USB port.
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Let us now look at the FPGA that you will use for this course.  The Altera 
Cyclone V FPGA has a more advanced programmable logic element than the 
simple 4-input LUT that we have considered up to now.  The call this a 
Adaptive Logic Module or ALM.  

An ALM can take up to 8 Boolean input signals and produces four outputs 
with or without a register.  Additionally, each ALM also can perform the 
function of a 2-bit binary full adder.

As a user of the Cyclone V FPGA, you don’t actually need to worry too much 
about exactly how the ALM is configured to implement your design.  The CAD 
software will take care of the mapping between your design and the physical 
implementation using the ALMs.  It is however useful to know that as the 
technology evolves, more and more complicated programmable logic 
elements are being developed by the manufacturers in order to improve the 
area utilization of the FPGAs.

The Cyclone V on the DE1-SOC board has 32,000 ALMs, which could be 
estimated to be equivalent to 85K+ the old style LEs.  Putting this in context, 
you could put onto this one chip 2,000 32-bit binary adder circuits!



11

The Cyclone V is much more than just an FPGA with a bunch of Logic Elements (or 
ALMs).  Our chip in the DE1 board has 32,000 ALMs, which is around 85K old style 4-
input LUT LEs. On top of that, it also has over 4Mbit of embedded memory, 87 DSP 
blocks (to do multiply-accumulate operations needed for signal processing), and 
even a dual-core ARM microprocessor!

It has hard-logic to implement PCIe interface (to fast peripherals) and external 
memory interface to connect to external memory.  It is a truly powerful chip onto 
which one could implement an entire digital electronic system.  Therefore Altera call 
this Cyclone V System-on-Chip (SoC).
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For this course, you will be designing circuits using the free version of the design 
suite known as Quartus Prime Lite from Intel/Altera.  You can download your own 
copy onto your notebook machine, or you can use the versions that are installed in 
any PCs located anywhere in the department.  

This very powerful design tool contains everything you need to design a complex 
digital system ON YOUR OWN COMPUTER!  However, the software only runs on 
either a MS Windows or a Linux operating system.  If you are using a Mac, you 
would need to run a Virtual Machine applications (such as Virtual Box) and install 
Windows or Linux before installing Quartus software.

Beware that the software is very large – you need to have several GB of free disk 
space.  The minimum required RAM is 4GB, and 8GB is recommended.

If your laptop is suitable, do download this software and play with it at home.
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This slide shows you the functional blocks of the DE1-SoC board.  This has 
everything you need test basic designs involving switches, 7-segment displays 
and even a VGA output.
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I also provide a purpose-built ADC/DAC board to support the lab experiment.  
This add-on board in only needed in week 3 onwards during the laboratory 
sessions.  So for now, you can ignore it.


